
 netymon pty ltd

Unit 3 / 13 Denham St Annerley 4103 Australia - +61 7 3392 1296 - +61 414 517 882

netymon pty ltd

 Kowari Proposal

 P R O P O S E D F I X F O R
-S Y M B O L I C

T R A N S F O R M A T I O N

ABN 56 113 088 145

Abstract

 It is proposed that Kowari be enhanced

.1 Refactor Constraint to add explicit access to the constraint's model

element

.2 Removal of ConstraintResolutionHandler from ConstraintDescriptor and

 it's replacement with a resolver delegating handler for custom

. (- [])constraints Thank you Alex Hall NGC for proposing this elegant fix

.3 Renaming all query evaluation methods and classes to refer to

 .evaluation in place of resolution

.4 , Itql Compound Syntax to support convenient expression of reified

 queries in itql

 Summary of Problem

I N T R O D U C T I O N

 - Kowari is a non relational database management system optimised for the

 . . store of RDF graphs The Kowari team released version 1 1 at the end of

. (2005 This version included enhancements to Kowari's 'ResolverSPI' funded by

) the Australian Defence Science and Technology Organisation that permit

 .Kowari to be used as an information integration platform

 , . , The original ResolverSPI originally released as 1 1pre1 was deliberately

 . limited in its scope Specifically it was limited to integrating external sources

 - . of rdf like data with Kowari It was always understood that this would be

 insufficient to support integrating arbitary data and would need to be

 extended if it was to fulfil the ultimate goal of making Kowari a powerful EII

. . platform In 1 1 we have implemented the first version of a full Resolver SPI

 , - , capable of integrating arbitary datastores using non rdf datamodels into

 .traditional rdf queries

 B A S I C K O W A R I Q U E R I E S

 Kowari is traditionally queried by either access to a programmatic SessionAPI

 or a query language iTQL which is parsed internally into calls on the Session

. , API To illustrate an example of a simple query requesting the suburb

 < : >portion of an address for an individual represented by the uri example fred

:follows

 < : >select $subur from test model

 < : > < > where example fred hasAddress $addr and

 < > $addr inSuburb $suburb

 This will be parsed into a Java object representing the following

 :structurewhich will be passed into a Session object for evaluation

 :QUERY

 - := []SELECT LIST $suburb

 - :MODEL EXPRESSION

 - : < : >MODEL RESROURCE test model

 - :=CONSTRAINT EXPRESSION

 - (CONSTRAINT CONJUNCTION

 := [< : > < >]CONSTRAINT example fred hasAddress $addr

 := [< >]CONSTRAINT $addr inSuburb $suburb

)

 :This will result in the following processing

.1 -Kowari engine obtains the Resolver associated in the system model

with < : >the uri test model

.2 . () The query engine passes each CONSTRAINT to Resolver resolve which

 returns the result as a Tuples object

.3 The two tuples are then joined corresponding to the

 ConstraintConjunction which itself corresponds to the and operation

 expressed in the iTQL query

.4 The result is then wrapped as an Answer for transmission back to

theclient

 S Y M B O L I C T R A N S F O R A M T I O N

 - . An intuitive model behind SymbolicTransformation is that of Reified RPC We

 - - .represent external data as a function of N in parameters to M out parameters

 .Possibly the most trivially intuitive of these functions would be basic addition

In - >i Out

1 1 - >a 2

1 2 - >b 3

2 1 - >c 3

2 2 - >d 4

...

 We recognise that any function of this nature can be mapped to rdf in

 , multiple ways however at the very least the above can be mapped to the

 :following graph

:_a < : >add lhs “ ”1

:_a < : >add rhs “ ”1

:_a < : >add sum “ ”2

:_b < : >add lhs “ ”1

:_b < : >add rhs “ ”2

:_b < : >add sum “ ”3

:_c < : >add lhs “ ”2

:_c < : >add rhs “ ”1

:_c < : >add sum “ ”3

:_d < : >add lhs “ ”2

:_d < : >add rhs “ ”2

:_d < : >add sum “ ”4

...

 (). .which can therefore be queried in iTql or a SessionAPI Query object ie

 < : >select $sum from add model

where

 < : > " " $_bn add lhs 1 and

 < : > " " $_bn add rhs 2 and

 < : > ;$_bn add sum $sum

 P R E P R A T O R Y W O R K

 Experience with the development of resolvers with the query rewriting API has

 .uncovered several issues with the new ResolverSPI

.1 Many SymbolicTransformer's require explicit access to the model on a

, - . constraint and the ability to map a model URL to a model type This

 -ability is currently implicit in the transformers access to the system

. model However since the development of the API additional work done

 / to resolve model URI URN conflation has rendered this insufficient to

 , .perform the mapping and an explicit mechanism is required

.2 The current requirement for a custom Constraint to implement its own

 ConstraintResolutionHandler has encouraged the complete resolution of

 . these constraints within the handler This is contary to the evaluation

 design of kowari where all resolution happens within the

. () . - Resolver resolve method This has flow on effects by bypassing

 . Kowari's security layer All primitive constraint resolution should be

 delegated to the appropriate Resolver by DatabaseSession via the

.QueryEvaluationContext

.3 Part of the reason for the confusion between Constraint Handling and

 Resolution is the use of the phrase 'Resolution' to refer both to graph

 - . operations and query calculus reductions The use of the term

/ , Evaluate Evaluation is preferred for the latter reserving

/ .Resolve Resolution for graph operations

.4 - A trivial 3 arity relation requires 3 primitive constraints to be included

 . - in the query In general a query against an N arity relationrequires N

 - . constraints per relational constraint As it is expected that users will

 - desire the ability to express multiple relational constraints in a single

, . query this is considered undesirable To aleviate this itis proposed

 that we extend the iTql query syntax with syntactic sugar based on

/ .SPARQL Turtle to simplify these constraints

 It is also recommended that time be spent writing an abstract transformer

 that can provide declarative transformation of conjunctive compound

 . constraints such as those discussed above This work will substantially

 simplify the development of most symbolic transformers

Proposal

 It is proposed that Kowari be enhanced

.1 Refactor Constraint to add explicit access to the constraint's model

element

.2 Removal of ConstraintResolutionHandler from ConstraintDescriptor and

 it's replacement with a resolver delegating handler for custom

. (- [])constraints Thank you Alex Hall NGC for proposing this elegant fix

.3 . Factoring of the localization code in LocalQueryResolver resolve into a

() .localizeConstraint method on ConstraintDescriptor

.4 Renaming all query evaluation methods and classes to refer to

 .evaluation in place of resolution

.5 Modifying SymbolicTransformation or MutableLocalQuery to provide a

 context to the transform method that permits the mapping of

 .modelURI's to modelTypeURI's

.6 , Itql Compound Syntax to support convenient expression of reified

 queries in itql

 E X P L I C I T M O D E L

 Currently the query evaluator makes an implicit assumption that the 4th

 . element of a constraint is the model This hasn't been true for a long time

 . and there are several kludges in the evaluator to compensate for this With

 the introduction of custom constraints it is no longer possible to isolate

 ; .these kludges from the SPI so it's time to remove them and fix it properly

 (). Constraint needs a method getModelElement

-C O N S T R A I N T D E S C R I P T O R
R E F A C T O R

 It was never intended that ConstraintResolutionHandlers would resolve their

 . constraints directly The design intent was for the iTQL query calculus to be

 reduced by the LocalQueryResolver ultimately to an Tuples Algebra expression

 . that could be resolved directly Primitive values within the Algebra are simple

/ - .constraints operations to be resolved against a triple graph

 () ConstraintResolutionHandler now ConstraintExpressionEvaluator will still be

, required as this represents the evaluation of both simple and complex

 (, ,). constraints conjunctions disjunctions etc Alex Hall's insight was that there

 is currently no existing or anticipated simple constraint that doesn't share the

 . same behaviour So it is proposed that access to this be removed from

 , custom constraints and the common behaviour factored into a common

.PrimitiveConstraintExpressionEvaluator

 L O C A L I Z A T I O N R E F A C T O R

 . - Currently LocalQueryResolver resolve hard codes the construction of a

 , localized ConstraintImpl from its argument and other kludges exist for the

 - . other hard coded constraint types This should be factored out into a

 - seperate interface analogous to the model rewrite logic on

. ConstraintDescriptor The existance of custom constraints mean we can no

 - .longer hard code kludges to handle this logic

 R E N A M I N G R E F A C T O R

 .Straight forward renaming

Currently After Rename

.LocalQueryResolver resolve .LocalQueryEvaluator evaluate

.ConstraintResolutionHandler resolve .ConstraintExpressionEvaluator evaluate

.ModelResolutionHandler resolve .ModelExpressionEvaluator evaluate

.ConstraintOperations resolveConstraintExpr

ession

.ConstraintOperations evaluateConstraintEx

pression

.ConstraintOperations resolveModelExpressi

on

.ConstraintOperations evaluateModelExpress

ion

. (LocalQuery resolve excluding Tuples

. ())LocalQuery resolve Constraint

.LocalQuery evalute

 S Y M B O L I C T R A N S F O R M A T I O N
R E F A C T O R I N G

 This involves refactoring the API to make access to the modelURL→

 . modelTypeURL mapping explicit Implementing this will require refactoring the

 context passed to SymbolicTransformation to provide access to the mapping

 I T Q L C O M P O U N D S Y N T A X

 .This would involve adding two forms of syntactic sugar to the iTql parser

[< > < >, < > < > a1 v1 a2 v2 : < > < >] =>v3 in m

 < > < > $_t a1 v1 and

 < > < > $_t a2 v2 and

 < > < >$_t a2 v3

and

{ < > < > < >, < > < > : < > < > }=>s a1 v1 a2 v2 v3 in m

 < > < > < > s a1 v1 and

 < > < > < > s a2 v2 and

 < > < > < >s a2 v3

 the key to the first expansion being the guarentee that $_t is unusedand

 . unreferencable by other constraints in the query

