
Unit 3/13 Denham St Annerley 4103 Australia - email: mail@netymon.com – acn: 113 088 145

netymon pty ltd

 Kowari Documentation

 I T Q L C O M P O U N D S Y N T A X
E X T E N S I O N

Motivation

 One of the strengths of RDF is its ability to degrade gracefully in the

 . presence of ambiguity or unknowns One way this is achieved is by the

 . extensive use of blank nodes Logically these correspond with skolemised

 , existential quantification and consequently permit the discription of

 . - entities that cannot yet be identified One unfortunate side effect of this

 approach is to substantially increase the number of constraints required to

 . query existentially defined entities With the introduction of the kowari

 (), resolver spi and especially with the new transformation api we have

 .increased our ability to model different data sources directly as rdf

 - Specifically the ability to model non rdf sources as rdf leads to a

 signifigant increase in the number of queries complicated by the need to

 .resolve existential quantification

 Summary of New Syntax

 The current solution is to provide syntactic sugar within the itql

 interpreter to allow the collapsing of common existential query patterns

 . into single compound constraints The new syntax has been derived

 , :directly from N3 and SPARQL and is defined as follows

[< > < > : < > < > p1 o1 p2 o1 , < > < >] =>o2 in m

 < > < > < > $_1 p1 o1 in m and

 < > < > < > $_1 p2 o1 in m and

 < > < > < >$_1 p2 o2 in m

and

{ < > < > < > : < > < > , < > < > }=>s p1 o1 p2 o1 o2 in m

 < > < > < > < > s p1 o1 in m and

 < > < > < > < > s p2 o1 in m and

 < > < > < > < >s p2 o2 in m

 the key to the first expansion being the guarentee that $_t is unused and

 . unreferencable by other constraints in the query We achive this by using

 .the variable $av__N for some arbitary but unique number N

Example

 The proposal that preceded implementation of this feature included the

 . simple addition graph displayed below This is adequate to provide a

 . concrete example An elaboration of this graph is used in four of the

 .unit tests

In - >i Out

1 1 - >a 2

1 2 - >b 3

2 1 - >c 3

2 2 - >d 4

...

 :This is mapped to rdf as per the following table

:_a < : >add lhs “ ”1

:_a < : >add rhs “ ”1

:_a < : >add sum “ ”2

:_b < : >add lhs “ ”1

:_b < : >add rhs “ ”2

:_b < : >add sum “ ”3

:_c < : >add lhs “ ”2

:_c < : >add rhs “ ”1

:_c < : >add sum “ ”3

:_d < : >add lhs “ ”2

:_d < : >add rhs “ ”2

:_d < : >add sum “ ”4

...

 . A basic query against this model is below In order to demonstrate the

 - difficulties inherent in the querying of eq based models we are going to

 assume that we obtain the values for lhs and rhs from another model in

 < :// / # >, kowari rmi localhost server1 query and that the above arithmetic model

 < :// / # >.is available as a resolver at rmi localhost server1 arith

 < :// / # >select $sum from rmi localhost server1 query

where

 < : > < : > doc 12345 pub timestamp $lhs and

 < : > < : > law copyright law term $rhs and

 < : > < :// / # > $_bn add lhs $lhs in rmi localhost server1 arith and

 < : > < :// / # > $_bn add rhs $rhs in rmi localhost server1 arith and

 < : > < :// / # > ;$_bn add sum $sum in rmi localhost server1 arith

 , - This query is relatively simple as the non rdf data being modeled is only

 - .a 3 tuple and we are only interested in performing a single constraint

 Yet this complexity increases substantially as we increase the complexity

 , ().of the model or nested levels of quantification example below

 :Using the new syntax this query can be written as

 < :// / # >select $sum from rmi localhost server1 query

where

 < : > < : > doc 12345 pub timestamp $lhs and

 < : > < : > law copyright law term $rhs and

 [< : > : < : > : < : > add lhs $lhs add rhs $rhs add sum $sum

< :// / # >] ;rmi localhost server1 arith

 -In which the constraint that conceptually will be matched against the 3

 -tuple of the underlying data is in fact represented syntactically as a 3

 .tuple in the query

 Unit Test

 /. The extension is tested in the jxunit tests as compound_queries It uses a

 . more complicated model then the simple arith model above Specifically it

 uses nested existential quantification to differentiate between the concept

 “ ” . of 3 and the symbol 3 used to represent the concept Relationally this

 is equivalent to normalising the original relation in the example above

 creating a seperate relation to associate a surrogate key with each number

 , with a string representing the number and likewise the concept of

 () addition and in this case multiplication from the symbol used to

 . :represent it Extracts of those tables are provided below

PK type Symbol

_1 number '1'

_2 number '2'

_3 operator *' '

...

PK type leftOperand rightOperand operation result

_4 equiv _1 _1 _3 _1

_5 equiv _1 _2 _3 _2

_6 equiv _2 _1 _3 _2

...

: Note A strict normalisation would be three relations with a seperate

 .relation to manage the mapping of PK to type

 :When mapped to rdf this takes on the following form

 < : : =" ">rdf Description rdf nodeID _mul

 < : : =" : "/>math type rdf resource math operator

 < : >*</ : >math symbol math symbol

 </ : >rdf Description

 < : : =" ">rdf Description rdf nodeID _1

 < : : =" : "/>math type rdf resource math number

 < : > </ : >math symbol 1 math symbol

 </ : >rdf Description

...

and

 < : >rdf Description

 < : : =" : "/>math type rdf resource math equiv

 < : : =" "/>math leftoperand rdf nodeID _1

 < : : =" "/>math rightoperand rdf nodeID _1

 < : : =" "/>math operator rdf nodeID _mul

 < : : =" "/>math result rdf nodeID _1

 </ : >rdf Description

 < : >rdf Description

 < : : =" : "/>math type rdf resource math equiv

 < : : =" "/>math leftoperand rdf nodeID _1

 < : : =" "/>math rightoperand rdf nodeID _2

 < : : =" "/>math operator rdf nodeID _mul

 < : : =" "/>math result rdf nodeID _2

 </ : >rdf Description

...

 “ = ” The resulting query to obtain an answer to 3 x 4 ? in the original

 :iTql syntax is below

 < :// / # > select $result from rmi localhost server1 foobar where

 < : > < : > < :// / # > $lhs math type math number in rmi localhost server1 arith and

 < : > < :// / # > $lhs math symbol '3' in rmi localhost server1 arith and

 < : > < : > < :// / # > $rhs math type math number in rmi localhost server1 arith and

 < : > < :// / # > $rhs math symbol '4' in rmi localhost server1 arith and

 < : > < : > < :// / # > $opr math type math operator in rmi localhost server1 arith and

 < : > * < :// / # > $opr math symbol ' ' in rmi localhost server1 arith and

 < : > < : > < :// / # > $res math type math number in rmi localhost server1 arith and

 < : > < :// / # > $res math symbol $result in rmi localhost server1 arith and

 < : > < : > < :// / # > $bn_0_0 math type math equiv in rmi localhost server1 arith and

 < : > < :// / # > $bn_0_0 math leftoperand $lhs in rmi localhost server1 arith and

 < : > < :// / # > $bn_0_0 math rightoperand $rhs in rmi localhost server1 arith and

 < : > < :// / # > $bn_0_0 math operator $opr in rmi localhost server1 arith and

 < : > < :// / # > ;$bn_0_0 math result $res in rmi localhost server1 arith

 , This can be simplified using the extended syntax resulting in one

 :compound constraint per existential variable to be bound

 < :// / # > select $result from rmi localhost server1 compound where

 { < : > < : > : $lhs math type math number

 < : > < :// / # > } math symbol '3' in rmi localhost server1 arith and

 { < : > < : > :$rhs math type math number

 < : > < :// / # > } math symbol '4' in rmi localhost server1 arith and

 { < : > < : > : $opr math type math operator

 < : > * < :// / # > } math symbol ' ' in rmi localhost server1 arith and

 { < : > < : > : $res math type math number

 < : > < :// / # > } math symbol $result in rmi localhost server1 arith and

 [< : > < : > :math type math equiv

 < : > :math leftoperand $lhs

 < : > :math rightoperand $rhs

 < : > :math operator $opr

 < : > < :// / # >] ;math result $res in rmi localhost server1 arith

 “ ”, The result is of course 12 and this query is one of the primary unit

 .tests testing this feature

 Implementation Comments

 , As this extension is strictly syntactic sugar this feature is implemented

 . entirely within the parser itself The key changes include new productions

 :in the grammar

 =constraint_factor

 { } constraint exclude? constraint |

 { } []: compound lbrace subject element exists_expression in_clause? rbrace |

 { } existential lbracket exists_expression in_clause? rbracket |

 { } expression exclude? lpar constraint_expression rpar |

 { } transitive transitive_clause |

 { } walk walk_clause ;

 =exists_expression

 { } eterm exists_pterm |

 { } ;colon exists_expression colon exists_pterm

 =exists_pterm

 { } []: ;pterm predicate element exists_oterm

 =exists_oterm

 { } eo1 oterm |

 { } ;eo2 exists_oterm comma oterm

 = oterm

 { } []: ;oterm object element

 :These are linked to methods on the ConstraintExpressionBuilder

/ / / / / / / .src jar itql java org kowari itql ConstraintExpressionBuilder java

 {public class ConstraintExpressionBuilder extends AnalysisAdapter

 (public void caseAExistentialConstraintFactor

) { ... }AExistentialConstraintFactor rawFactor

 (public void caseACompoundConstraintFactor

) { ... }ACompoundConstraintFactor rawFactor

 (,public ConstraintExpression buildExistential ConstraintElement subject

 ,) { ... }PExistsExpression rawTerm AInClause in

}

 These methods in turn make use of a new public method on

, () ItqlInterpreter nextAnonVariable which handles the allocation of

 [] . anonymous variables to support the syntax They also delgate to two

 , new classes CompoundPredListBuilder and ObjectListBuilder to collect their

 . respective lists of elements One shortcut used by the existing parser code

 to handle in clauses in normal constraints is to upcast the in_clause

 , element representing the production from a PInClause to an AinClause as

 .only the latter provides access to the internal structure of the production

 () The buildExistential method uses the same kludge to avoid having to

 . define a seperate builder to collect the element from the in_clause In a

 , very real sense this is encapsulation gone mad and is only one of several

 reasons why sablecc is not recommended for any future parser work in

.Kowari

