Jump to: navigation, search

Welcome! hopes to be accepted as a mentoring organization in the Google Summer of Code for 2014! Below, we've collected project ideas for the GSoC-2014.

Background is a volunteer organization that seeks to advance the state of open-source software on open-source hardware platforms capable of running high-level languages and operating systems (primarily Linux) in embedded environments. Born from taking mobile phone processors and putting them on low-cost boards to build affordable desktop computers, has evolved to focus on the needs of the "maker" community with greater focus on the I/O needed for controlling motors and reading sensors to build things like robots, 3d printers, flying drones, in-car computer systems and much more. Past GSoC projects included an RPC framework for heterogeneous processor communication, a transparent USB packet sniffer, ARM optimizations for XBMC, ARM optimizations for FFTs, make-shift pulse-width-modulation and RPC optimizations for OpenCV. has benefited from sponsorship from Texas Instruments, CircuitCo, Digi-Key and others, but avoids any dependence on that sponsorship for sustaining the effort. The project has evolved over the past few years with over 100,000 boards in circulation with developers worldwide and strong roots in the Linaro, Yocto Project, Angstrom Distribution and Linux communities---and support for running most major Linux distributions including Ubuntu, Android, Fedora, Debian, ArchLinux, Gentoo, Buildroot and many more.

BeagleBoard was inspiration for Raspberry Pi[1] and is available for only $45 through over 30 distributors world-wide (and is even available at Microcenter and Radio Shack in the USA), but is more than a throw-away computer. It is an instance of true open hardware, exposing users to the broader world of electronics, demystifying computers and fostering an environment of clones that have changed the industry for good.

Students will be expected to demonstrate an understanding of cross-compiling before being accepted, but support for demonstration is available through the IRC channel that typically has approximately 150 online chatters logged on at any time, most with sufficient experience to explain the process.

Every accepted student will be sent a BeagleBone Black before the first week of coding for testing their project.

Additional hardware will be provided depending on need and value.

For more information, check out and

Students looking for ideas

Student proposals can encompass projects inspired from the following list of ideas or can include personal project ideas. Previous Google Summer of Code projects show that the key to success is being passionate about your project, so propose something that is extremely interesting to you, even if it is not on this list. We will be glad to help students develop ideas into projects via the BeagleBoard IRC or the BeagleBoard mailing list. There are many potential project ideas and we will match students to projects based on their interests and help scope the proposals to something that can be completed in the Summer of Code timeframe.

There are more than 300 existing projects listed at If you are interested in any of the projects listed on the projects page, contact the project members to see if there are any aspects of their projects that can be enhanced to create a GSoC project. There are also several ideas on theECE497 class project idea list. You can also check out last year's idea page.

Mentors wondering where to help

Please start by registering your ideas for student projects below by following the template provided with the existing ideas. Furthermore, scroll down to the bottom and give everyone a bit of information about your expertise and availability by adding yourself to the table. Jason will make final approvals for mentor assignments based on if we first get accepted as a mentoring organization and best matching mentor skill sets with student project ideas deemed valuable to the community.

You will also need to register on Melange and request to be a mentor for

General requirements

All projects have the following basic requirements:

  1. Once accepted, the project must be registered on
  2. All newly generated materials must be released under an open source license.
  3. Individual students shall retain copyright on their works.
  4. Source code generated during the project must be released on (to be cloned to on successful completion).
  5. The registration on must include an RSS feed with project announcements and updates at every milestone. Sources for the RSS feed should be,, or some other established blog-hosting service with known reliability.
  6. To help you to break your project down into manageable chunks and also to help the project's mentors to better support your efforts, weekly project status reports should be e-mailed to the project's mentors and the organization administrator (Jason Kridner). Each status report should outline:
    1. what was accomplished that week,
    2. any issues that prevented that week's goals from being completed and
    3. your goals for the next week.
  7. Students will provide two recorded audio/video presentations uploaded to youtube or vimeo (screencasts are appropriate), one near the beginning of the project summarizing their project goals and another in the wrap-up phase to summarize their accomplishments. Examples can be found on
  8. Students will demonstrate their ability to cross-compile and utilize version control software by creating a "Hello World" application and generating a pull request to For assistance, please visit or utilize the beagleboard-gsoc Google Group. The "Hello World" application must print your name and the date out in an ARM Linux environment. Freely available emulators may be used to test your application or you can ask anyone on the chat or mailing list to help you test.
  9. All projects will produce reusable software components and will not be "what–I-built-over-my-summer-vacation" projects. Including a hardware component is welcome, but the project *deliverable* will be software that may be utilized by a wide audience of the community.


There are several areas needing contributions:
Kernel: Improving the state of the Linux kernel including improved ARM/OMAP/Sitara platform support, simplifying the development of add-on hardware for embedded systems and exchanging hardware connectivity information with userspace.
Secondary processor support (RPC/gcc/etc.): Enabling usage of DSPs, PRUs, FPGAs, Cortex-M3s, Arduinos, MSP430 launchpads and other attached processing platforms.
Scripting libraries and web interfaces: Improving the Bonescript JavaScript library, web-based interface libraries, examples or alternatives in other languages.
Frameworks for open-hardware projects: Consolidating support for simplified home manufacturing (CNC, 3D printers, laser cutters, pick-and-place machines, etc.), drones/bots (ROS, IMU, video streaming, etc.) or other common tasks.
Optimizations to existing userspace applications/libraries: Optimizations to applications and libraries like XBMC to make them run better on resource constrained environments or to take advantage of more specialized processing elements.


Porting ArduPilot to BeagleBone Black. Some of the tasks include:

  • PRU drivers (PWM and PPM)
  • SPI drivers for cape sensors
  • RC Input (PPM)
  • Power handling
  • Analog sensing
  • Flight tests

Goal: ArduPilot/APM is a open source autopilot system supporting multi-copters, traditional helicopters, fixed wing aircraft and rovers. The community decided to switch to the BeagleBone Black as their main target thereby the goal of this project will be to support this step, code and test everything to make the BeagleBone the next "platform for aerial devices".
Existing Project: ArduPilot Website, Source Code, BeaglePilot on GitHub
Hardware Skills: Interfacing sensors, PPM, PRUSS, some experience RC planes/multicopters
Software Skills: C, C++, Python, Assembly
Possible Mentors: Andrew Tridgell, Kevin Hester, Lorenz Meier, Samy Kamkar
Workload: Considering the experience these first months at BeaglePilot we estimate that there's room for 3 students on this project.
eLinux project page:

Upstreaming Kernel Patches

The BeagleBone currently relies on a number of out-of-tree kernel patches in order to boot. These patches are maintained by Koen Kooi (CircuitCo) and come from many sources, including TI employees and various mailing lists. Getting more of these patches upstream would make it easier to boot a BeagleBone and also make use of a BeagleBone easier for users and kernel developers who need to track upstream kernel changes, or who otherwise need to be closer to the bleeding edge of Linux kernel development. The current patch set is maintained at github and contains scripts to easily patch an upstream kernel. The scripts in this repository are used to build the kernels which ship with the Angstrom SD card images.

Goal: Push as many patches as possible to Linus's mainline kernel tree via the appropriate staging kernels for the subsystems involved.
Existing Project: The Mainline Linux Kernel, patches needing to be pushed
Hardware Skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals.
Software Skills: Able to write software in C, create patches to the Linux kernel and perform cross-compilation and testing.
Possible mentors: Matt Porter, Koen Kooi, Alan Ott

Generic Device Tree Creator

Device Tree usage can be a steep learning curve for many. Despite N tutorials for it. Kernel version and naming convention changes cause issues. So how about a tool to create the DT file for the Beaglebone Black. Select the required options. Need this gpio for pru. Need this adc for tsc. Need this pin. And it generated DT bindings for you.

Ideally it should effectively expand for other embedded development kits. If you load a Beaglebone Black Rev C file. The DT bindings for that are generated. If you load a Beaglebone White Rev A file, DT bindings for that are generated etc.. Similarly, kernel version changes should be easy to incorporate as well.

Getting the whole thing as part of GSoC can get too much unless you are really skilled. So a basic structure should be the aim initially. Suggestions for the base platform running the tool are welcome. e.g. A webapp/bonescript can be used. Python perhaps.

Goal: Get a basic device tree creator for BBB (and possibly BBW) working with a structure to allow different board types
Existing Project: is a small bit of a starting point.
Hardware Skills: Should be able to understand the capes
Software Skills: Cross-compile the Linux kernel and testing the DT.
Possible mentors: Jason Kridner

IIO debugging tools

Quick background: IIO is the new way of doing sensors but being a newer interface, it lacks tools for debugging. This project is to produce sometools to debug drivers. There are several ways this project can happen:
1. We can implement userland tools that read IIO data similar to the evtest tool.
2. We can implement a event handler for the IIO driver. This way existing tools and code can be used. There was references from another mailing list (probally LKML) talking about this.

Goal: Userspace application similar to evtest that captures debug events and instrumented IIO driver code to produce those events.
Existing Project: patched kernel with IIO driver
Hardware Skills: None.
Software Skills:C coding (1), (2) requires kernel coding
Possible mentors: Hunyue Yau

node-webkit based cross-platform getting-started app

Newbies often have a difficult time following directions that could be replaced by an application. The steps to download and install an application is something that even newbies can typically manage. This avoid issues like having bad browsers or not having typical development tools like 'ssh'. This is a common problem across all embedded Linux platforms and node-webkit provides a good solution for making it cross-platform.


  • Provide instructions for getting up-and-running with the board based (incorporate the Getting Started Guide)
  • Automatically discover boards on the LAN using mDNS and predetermined IP addresses
  • Act as a browser to interact with the board, including performing SSH and SCP
  • Discover the latest SD card images from multiple distributions
  • Bootload the board with a USB-mass-storage-class application
  • Program SD cards through the board or a USB adapter
  • Program on-board eMMC

Goal: Provide a downloadable application for Linux, Windows and Mac that enables unexperienced users to get going enough to start learning about using Linux and the embedded I/O.
Existing Project: Incomplete node webkit app for the BeagleBone Getting Started guide
Hardware Skills: N/A
Software Skills: Able to write software in JavaScript and work with node.js modules
Possible mentors: Jason Kridner

BoneScript web pages with live-running examples and documentation

{{#ev:youtube|VP0DOheLxQA||right|5 JavaScript Tricks for BeagleBone}} The BoneScript JavaScript library enables hardware control from web pages using for remote procedure calls. This provides an excellent environment for teaching how to wire-up sensors and controls and rapidly prototype user interfaces. Numerous examples exist on the web, but consolidation and testing are required to make them usable by novices. Examples include interfacing with potentiometers, light sensors, temperature sensors, motors and LED arrays then visualizing/controlling with Twitter, Facebook, jQuery, Spacebrew and dweet,io.

Goal: About 25 web pages with executable script that demonstrate how to connect up sensor and actuator hardware integrated into the bone101 repository and shared on
Existing Projects: 5 easy tricks presentation,,, BMP085 Bonescript example, ECE497 examples, JSFiddle on GIST example
Hardware Skills: Basic knowledge of digital circuits.
Software Skills: JavaScript and some familiarity with Linux
Possible mentors: Jason Kridner

Integrate support libraries into Debian

Many BeagleBone and embedded Linux support libraries in various programming languages exist as projects that aren't included in the distro shipped with BeagleBoard and BeagleBone. These need packaging scripts such that they can be easily downloaded and incorporated into the upcoming shipping Debian distro.

  • Python PyBBIO
  • Ruby beaglebone-ruby
  • Perl bonelib

Goal: PyBBIO, beaglebone-ruby and bonelib included in the distro shipping with BeagleBone
Existing Project: PyBBIO, beaglebone-ruby, bonelib
Hardware Skills: Able to wire up simple hardware, like LEDs
Software Skills: Familiarity with Python, Ruby, Perl, embedded Linux and build systems.
Possible mentors: Jason Kridner, Robert Nelson, Rob Rittman

SYSFS entries for IIO and PWM

IIO and PWM provide mechanisms for sampling touch screens, performing general purpose A/D conversions to read sensors, generating voltage levels and driving motors. The Linux kernel SYSFS mechanism provides a simplified mechanism for userspace applications to set parameters and read/write data values.

Goal: Push patches to Linux mainline providing SYSFS entries for IIO and PWM useful for building a demo robot
Existing project:
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in C, create patches to the Linux kernel and perform cross-compilation
Possible mentors: Laine Walker-Avina

Using BeagleBone PRUs to control CNC and 3D printer stepper motor Drivers

This project is to write code for the PRU (realtime processors on the AM335x used in the Beagle Bone) so that it can generate multiple step and direction outputs based on a queue of commands in real time. This needs to be done in real time so the acceleration and coordination of multiple stepper motors can be controlled and coordinated. A step/dir signal is commonly used in a lot of stepper motor drivers. While it is possible to generate stepper phase information from the PRU, it is also undesireable from a testing stand point. An example of a reason for doing this is controlling the X/Y directions of the head of a 3D printer so that it can generate precise curves. While similar code has been done, it is not done in a real time fashion so it is difficult to add coordination between motors and/or maintain a known acceleration.

The result of this code should be something interfaceable to a control system like the non realtime portions of the Linux CNC project (formerly the EMC project). But as a demo, this same code should also demonstrate a node.js functionality such as a "G-code" interpreter. This node.js portion can be considered a second project due to the different skill sets required and ideally this project would be split between two GSoC students. One project would be working mostly on PRU assembly with integration into the Linux kernel. The other project would be working mostly on userspace JavaScript in node.js and C++ code for anything needing optimization or low-level kernel access. Mentors would heavily assist on defining the right interfaces between the two programming environments. Goal: create code to use the AM335x PRUs to generate multiple step and direction outputs for reprap and CNC applications
Existing projects: Pru Documentation, UIO Driver documentation
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Assembly and C coding. Node.js for g-code interpretation
Possible mentors:Jason Kridner, Hunyue Yau, Laine Walker-Avina

PRU upstreaming

Remove HWMOD dependency requirement for PRU along with adding device tree bindings so it can be upstreamed into Linus's tree.

Goal: Push patches to Linux mainline providing support for the AM335x PRU
Existing project:
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in C, understand existing patches with PRU support, create patches to the Linux kernel and perform cross-compilation
Possible mentors: Start with Jason Kridner and Matt Porter, but we'll get some others involved

PRU firmware loader

Allow "firmware" which are really binary PRU applications to be loaded directly on PRU cores and executed using the request_firmware() functionality of the Linux Kernel. This should also be Cape Manager to load PRU cape specific applications.

Ideal workflow:

  • Cape detected that uses the PRU
    • Setup pinmux
  • Find the respective firmware file for PRU core (or both cores) /lib/firmware/cape_A020_pru0.bin
  • Load onto PRU and begin execution.

Goal: Push patches to Linux mainline providing support to loading firmware on PRU cores and executing
Existing project:
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in C, create patches to the Linux kernel and perform cross-compilation
Possible mentors: Matt Porter

Program PRU using high-level scripting lanugages

Based on Chris Roger's BotSpeak work to provide a virtual machine for typical Arduino functions that can be accessed from LabView, build a virtual machine to enable PRU programming from Bonescript. The virtual machine is a simple interpreter that loops over the commands to perform such as delay, pinMode, analogRead, analogWrite, digitalRead and digitalWrite functions.

A basic design is elaborated upon at

Goal: Implement a BotSpeak interpreter that off-loads hard real-time tasks from Bonescript onto the PRU and include that in the BoneScript project
Existing projects: PRUDUINO,,, Chris' language definition
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in JavaScript and assembly
Possible mentors: Chris Rogers, Jason Kridner

Android-based remote display

Use your Android phone as a remote display and control unit for you BeagleBone. Display your applications UI on the phone screen and use your phone's touchscreen to control your application on the Beaglebone.

Since all Android devices are required to support ADK (Accessory Development Kit) mode, a BeagleBone acting as a USB host can talk to an Android phone over USB. An Android application would provide the "remote" screen for the Beaglebone, much like an USB based external display on a PC. At the same time button presses and touchscreen events can be relayed to the Beaglebone as it if had a local keyboard connected

Many applications are possible, from a simple shell to aid developing and debugging to a remote X server that hosts GUI apps.

If ADK mode can also be achieved in u-boot, it could help to setup and debug the bootloader even before the Linux kernel starts.

Further, a part of the Android devices' filesystem could me made accessible to mount on the Beaglebone

Goal: Implement a remote display and keyboard for the Beaglebone running on an Android phone or tablet
Existing Project:, BeagleBone implementation of Android Accessory Development Toolkit
Hardware Skills: Some knowledge of USB
Software Skills: Java, C and familiarity with Android
Possible mentors: Vladimir Pantelic, Jason Kridner and others

Cross platform USB boot

Boot (and flash) your BeagleBone (Black) from a Windows, Mac or Linux computer without using a microSD card.

Extend last year's GSoC project to boot from an Android device to support Windows, Mac and Linux hosts.

Goal: Download a Linux image from the web and boot a BeagleBone using it over USB
Existing Project:,
Hardware Skills: Some knowledge of USB
Software Skills: C and familiarity with Mac, Linux and Windows
Possible mentors: Vladimir Pantelic, Jason Kridner

Android under Angstrom

Some people want to play Angry Birds or run other Android apps on their BeagleBoard/BeagleBone. Of course, you could use the Rowboat Android project as-is, but then you'd have to give up all of their typical Linux/X11 applications available in Angstrom. This project would use an Android-enabled kernel and a combination of both Angstrom and Android file systems. The input and display methods required for Android would need to be adjusted to run in on a virtual terminal and chroot/chvt would be used to invoke the various user space windows.

This has essentially been done once as part of Always Innovating's Super-Jumbo demo running Ubuntu, Angstrom, ChromeOS and Android simultaneously. The fundamental challenge is getting it reproducible and integrated into the OpenEmbedded build system for Angstrom and then starting to minimize the wasted file space by sharing libraries. Eventually, even making Android applications run in a window is desired.

Goal: Run Android applications under Angstrom and toggle back-and-forth using CTRL-ALT-Fn key presses.
Existing projects:,
Hardware skills: Minimal
Software skills: Able to write software in C and Java, experience with X11 and Android
Possible mentors: Hunyue Yau, Vladimir Pantelic

Library of Arduino-compatible functions for StarterWare

This would be an implementation of Arduino utilizing the BeagleBone Black and the StarterWare O/S independent library for accessing the hardware. Without having to access the hardware through an operating system, developers will be able to fine-tune the system to achieve optimal resource management of the CPU, peripherals and memory. The project would also include basic documentation and generation of code samples for various functionality of the library, such as SPI,Serial,Ethernet for starters. This would make the project thorough and ready for use by various developers in the community.

Goal: Utilize the Energia fork of Arduino to push support for BeagleBone and BeagleBone Black
Existing Project: Energia, StarterWare
Hardware Skills: Yes
Software Skills: C/C++
Possible mentors: Jason Kridner (others can be referred if there are interested students)

Documentation for BeagleBone and BeagleBone Black

We need to avoid documentation projects for GSoC. Please turn this into a coding project. Providing code examples might be sufficient, but code needs to be the output. The documentation can be a side-effect. Produce HOWTOs and code samples for use of I/O on BeagleBone to be placed in the neutral BeagleBone community pages.

Goal: The community has lacked a canonical source of high quality documentation on how to use peripherals found on AM335x. Peripheral use to be documented will include UARTs, I2C, SPI, PWM, ADC, USB Host/Gadget as well as advanced topics such as software development and optimization for the M3 and PRU coprocessors.
Existing Project: BeagleBone Community Page
Hardware Skills: Yes
Software Skills: C
Possible mentors: Hunyue Yau and Matt Porter (others welcome to volunteer)

PyBBIO library development

PyBBIO is a Python library that aims to provide Arduino-style API for hardware IO support on the Beaglebone and BeagleBone Black. It is meant to make hardware development fast and easy with Python.

Goal: Moving portions to C extensions to speed up PyBBIO, as well as adding further peripheral support and internal libraries. Possible things to add support for:

  • On-chip peripherals (SPI, CAN, eQEP, GPMC, etc.)
  • Radios (XBee, Rn-42, RN-171, etc.)
  • Sensors (temp, rh, proximity, gyro, accel, etc.)
  • Displays (HD4780, KS0108, Nokia 5110, etc.)
  • IoT libraries (Xively, Freeboard, web UI, etc.)

There should also be ample example programs for any new libraries. It would also be good to have a couple larger example projects that do more than just demo API (for example a toaster oven reflow solder controller:

Existing Project: PyBBIO
Hardware Skills: Yes
Software Skills: Python, C, familiar with Python C extensions
Possible mentors: Alexander Hiam

MMC and DMA Linux performance

Improving performance of MMC driver by understanding issues, improving MMC, DMA drivers and eliminating bottlenecks.

Goal: Both MMC and DMA are critical to high performance of I/O intensive workloads on a Beagleboard/ARM platform, even fast system boot up depends on it.

A good amount of performance improvement is possible just by identifying what's going on in hot paths and how things can be done more simply, without breaking anything else. Also improvements are possible using innovative techniques such as intelligent buffer allocation and reducing overhead where possible in dependent components such as DMA. Cutting the fat in hot paths is definitely a start.

Existing Project: Upstream Kernel
Hardware Skills: Yes
Software Skills: C, Possible use of JTAG, ftrace, perf etc.
Possible mentors: Joel Fernandes

Implementing and testing core libraries in Userspace Arduino

Implementing and testing core libraries in Userspace Arduino, especially SPI, I2C, Wire, Serial, Servo, Stepper

This would primarily target the Arduino Tre.

Making a stable release of Processing's serial libraries for Tre

Making a stable release of OpenFrameworks's serial libraries for Tre

Previous ideas


Name IRC nickname Melange name Native language Other languages Timezone Software help Hardware help Focus projects
Jason Kridner jkridner jkridner English - US Eastern JavaScript, C, u-boot wiring, timing diagrams, basic debug BoneScript development
Vladimir Pantelic av500 vp7 German English, Serbian CET Experienced on most areas of Embedded Linux, Multimedia Schematic Review + Design Embedded Linux, Linux Multimedia, Android
Matt Porter mdp - English (U.S. Midwestern Dialect) None US Eastern Embedded Linux Firmware/Kernel and system level design. Designing Linux drivers to make the best use of existing infrastructure. Schematic Review + Design ARM/AM335x/OMAP/PRU U-Boot and Kernel/Driver Development
Hunyue Yau ds2 hygsoc English - US Pacific Android, C, Linux, scripting Yes -
Tom Rini Tartarus trini English - US Eastern C, u-boot, OpenEmbedded - U-Boot or OpenEmbedded development
Luis Gustavo Lira lglira lglira Spanish English GMT/UTC -5 Embedded Linux, C, Android Design, Debug, Wiring Projects on the BeagleBone
Frans Meulenbroeks eFfeM effem Dutch English CET Linux (including drivers), U-Boot, C, Documentation; Coding Style, QA device interfacing (for drivers), review FPGA code -
Pantelis Antoniou panto panto Greek English GMT+2 Linux Kernel, S/W Architecture - Embedded Linux architecture fixes
Andrew Tridgell tridge andrewtridgell English GMT+11 Linux Kernel, C, C++, python - BeaglePilot
Kevin Hester kevinh /kevinh_ geeksville English GMT-8 Linux embedded, C, C++ - BeaglePilot
Lorenz Meier LorenzMeier lomeier English GMT+1 mobile localization, 3D reconstruction on smartphones and micro air vehicles - BeaglePilot
Alexander Hiam alexanderhiam alexanderhiam English - US Eastern Python, C, Linux Kernel Prototyping, design, layout, debugging PyBBIO
Samy Kamkar samy/samy_ - English - US Eastern Python, C, Linux Kernel Privacy and security researcher, computer hacker, whistleblower and entrepreneur BeaglePilot
Joel Fernandes joel_ joelagnel English - US Central C, Linux Kernel, Python Processor Engineer, Embedded systems Architecture Linux kernel improvement (perf and functionality)
Greg Kroah-Hartman gregkh gregh
David Scheltema dschelt dcschelt
Charles Steinkuehler cdstienkuehler
Steve French VoltVisionFrenchy voltvisionfrenchy

Previous mentors