
1

Optimizing Browsing Experience

Rodolph Perfetta

ARM



2

The Challenge

 ARM based devices can offer

 Better battery life

 Slimmer form factor

 Lower cost

 But

 Software is primarily written for desktop platforms

 Need to be optimized for ARM and mobile environment



3

Agenda

 Javascript Engine - Today

 Javascript Engine - Tomorrow

 Optimizations and Architecture

 Memory and Power

 ARM CPU and Memory Architecture

 Profiling

 Software limitations



4

JavaScript Engine - Today

 Javascript VM are in their infancy when it comes to
performance optimizations

 FireFox 3, Safari 3, IE7, Opera

 Bytecode interpreter

 Syntax tree walker

 Chrome 1

 JIT to native code

 While optimizations are nice to have on powerful hardware,
they are critical on small devices



5

JavaScript Engine - Tomorrow

 Google Chrome

 All the code is compiled before being run

 Safari 4.0 Beta

 Mixed interpreted/compiled code

 Use JIT for RegExp as well

 FireFox 3.1 Beta

 Interpret, trace then compile

 Aggressive type specialisation

 There are more than one way to improve performance

 some ways are more “embedded friendly”

 Think of memory

 Think of power



6

JavaScript Engine - Tomorrow

 SunSpider benchmark

 Performance normalised
to FireFox 3

 Higher is better

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FF
3

FF
3.

1

W
eb

K
it

C
hr

om
e

Sunspider



7

Opt: Polymorphic Inline Cache

 Used by V8 (Chrome) and SquirrelFishExtreme (Safari 4)

 Assign “types” to object based on their fields definition

 On field access:

 Cache first used offset and corresponding type

 If the next field access is on the same type of object then reused
cached offset

 If not redo lookup and update caches

 Implementation

 Offset and type are in-lined in the code

 Every cache miss will trigger a rewrite of native code

 On ARM this will require a cache sync

 Cache sync operation is not free, if the cache hit rate is not high it won’t
be worth the effort.



8

Opt: Tracing and Type Specialisation

 Used by TraceMonkey (FireFox 3.1)

 Interpret the code

 Record exact types used

 When a loop is detected generate code with gathered type information

 If types change, retrace, recompile

 Code is generated in buffer of 4k, no requirements for the buffer to be
contiguous

 Performance can already reach non optimized C code

 Potential to be memory friendly:

 Only compile what is run

 chunks can be deallocated



9

Memory and Power, Power and Memory

 Memory is key to performance on ARM systems

 Limited amount: Nokia N810 has 128M

 Less memory accessed/used usually means:

 faster applications

 cheaper devices

 better battery life

 Unused CPU cycle are not free on a mobile device

 While idle an ARM CPU will consume 200-300 times less power

 Keeping the CPU alive is costly

 The faster your task run the more battery you get



10

Memory Footprint

 Do you know how much memory your application uses?

 Code footprint

 Data footprint

 OS instrumentation

 patch to the linux kernel

 Dynamic instrumentations

 Malloc/new instrumentation

 simpler

 good enough to start with

 There are multiple malloc libraries out there



11

ARM CPU and Memory Architecture

 Outside L1/L2
caches it is different
for every licensee

 Do not assume
anything about RAM
(e.g. latencies)

 Instruction and Data
cache need to be
managed manually

 CortexA have L2

x1-4

x1-4

ARMv6

ARMv7-Cortex

ARM1176JZ(F)-S

ARM1136J(F)-S

Cortex-A9

Cortex-A8

ARM11 MPCore



12

On Target Profiling - Scaling down

 Profiling/tuning on a
different architecture has
little value

 E.g looking up a 32bits key
in a table

 Sparse (key every 8 words)

 Dense

 Searching 30000 keys

 Macbook (Core 2 Duo)

 CortexA8 board

 Dense speed up vs sparse 0

2

4

6

8

10

12

14

16

18

20

Core 2 CortexA8

dense/sparse



13

Off Target Profiling - Scaling up

 Your target may not always
be available

 Try scaling up on a more
powerful platform
 Will not give you a realistic

profile

 Can help spotting potential
issues

 Ex matrix multiplication
 Row first

 Column first

 Speed difference with
various matrix sizes
 Macbook (Core 2 Duo)

 CortexA8 board

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Core 2 200 A8 200 Core 2

1500

row col



14

Choose the right ISA

 ARM: Full speed, Full size

 Thumb: 20% smaller, 20% slower

 Thumb was design as a static compiler target

 Thumb is useful for system with 16bits memory

 Thumb is not JIT friendly (non consistent constraints, small range for
branches, less registers etc)

 Thumb2: Full speed, 20% smaller

 Thumb2 addresses Thumb’s issues

 ARM is still the most flexible of the three ISA



15

Use the Hardware

 VFP is becoming more available, make use of it

 Available on some ARMv6 (ARM11)

 Available on all ARMv7A (CortexA8, CortexA9)

 Thumb2 can make a difference for big code base

 Neon (128bits SIMD)

 Useful for codec

 gcc mainline does not generate Neon code

 gcc mainline support Neon assembler

 If you want it, do it yourself



16

Know the software: Procedure Call Standard

 When passing parameters

 first four word sized parameters in register 0 to 3

 The rest on the stack

 Sub word sized parameter take a full register

 64bits values are passed in an even + consecutive odd
register. On the stack 64bits values are 8 bytes aligned

 f1(int a, double b, int c): a->r0, b->r2+r3, c-> stack

 f2(double a, int b, int c): a->r0+r1, b->r2, c->r3

 Avoiding parameters on the stack usually result in smaller and
faster code

 GCC has not yet implemented use VFP register for passing
parameter

 More info at http://infocenter.arm.com



17

Summary

 When doing mobile software development

 Keep in mind memory, power

 Use the hardware fully

 Profile on each target

 Know the surrounding software limitations


