Optimizing Browsing Experience

Rodolph Perfetta
ARM




The Challenge

ARM based devices can offer
Better battery life
Slimmer form factor
Lower cost

But

Software is primarily written for desktop platforms
Need to be optimized for ARM and mobile environment

THE ARCHITECTURE FOR THE DIGITAL WORLD?®




Agenda

Javascript Engine - Today
Javascript Engine - Tomorrow
Optimizations and Architecture
Memory and Power

ARM CPU and Memory Architecture
Profiling

Software limitations

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



JavaScript Engine - Today

Javascript VM are in their infancy when it comes to
performance optimizations

FireFox 3, Safari 3, IE7, Opera

Bytecode interpreter
Syntax tree walker

Chrome 1
JIT to native code

While optimizations are nice to have on powerful hardware,
they are critical on small devices

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



JavaScript Engine - Tomorrow

Google Chrome
All the code is compiled before being run

Safari 4.0 Beta

Mixed interpreted/compiled code
Use JIT for RegExp as well

FireFox 3.1 Beta

Interpret, trace then compile
Aggressive type specialisation

There are more than one way to improve performance
some ways are more “embedded friendly”

Think of memory
Think of power

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



JavaScript Engine - Tomorrow

to FireFox 3
Higher is better

SunSpider benchmark
Performance normalised ‘ |




Opt: Polymorphic Inline Cache

Used by V8 (Chrome) and SquirrelFishExtreme (Safari 4)
Assign “types” to object based on their fields definition

On field access:
Cache first used offset and corresponding type

If the next field access is on the same type of object then reused
cached offset

If not redo lookup and update caches

Implementation
Offset and type are in-lined in the code
Every cache miss will trigger a rewrite of native code
On ARM this will require a cache sync

Cache sync operation is not free, if the cache hit rate is not high it won’t
be worth the effort.

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



Opt: Tracing and Type Specialisation

Used by TraceMonkey (FireFox 3.1)

Interpret the code
Record exact types used
When a loop is detected generate code with gathered type information

If types change, retrace, recompile

Code is generated in buffer of 4k, no requirements for the buffer to be
contiguous

Performance can already reach non optimized C code
Potential to be memory friendly:

Only compile what is run
chunks can be deallocated

THE ARCHITECTURE FOR THE DIGITAL WORLD?®




Memory and Power, Power and Memory

Memory is key to performance on ARM systems
Limited amount: Nokia N810 has 128M

Less memory accessed/used usually means:
faster applications
cheaper devices
better battery life

Unused CPU cycle are not free on a mobile device
While idle an ARM CPU will consume 200-300 times less power
Keeping the CPU alive is costly

The faster your task run the more battery you get

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



Memory Footprint

Do you know how much memory your application uses?
Code footprint
Data footprint

OS instrumentation
patch to the linux kernel
Dynamic instrumentations
Malloc/new instrumentation
simpler
good enough to start with
There are multiple malloc libraries out there

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



ARM CPU and Memory Architecture

Qutside L1/L2
caches it is different

for every licensee - ARMv7-Cortex

Do not assume L
anything about RAM g C
(e.g. latencies) C

Instruction and Data -
cache need to be (@
managed manually

CortexA have L2

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



On Target Profiling - Scaling down

Profiling/tuning on a
different architecture has
little value

E.g looking up a 32bits key
In a table
Sparse (key every 8 words)
Dense

Searching 30000 keys
Macbook (Core 2 Duo)
CortexA8 board

Dense speed up vs sparse

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



Off Target Profiling - Scaling up

Your target may not always
be available

Try scaling up on a more
powerful platform
Will not give you a realistic

profile
Can help spotting potential
Issues

Ex matrix multiplication
Row first
Column first

Speed difference with

various matrix sizes
Macbook (Core 2 Duo)
CortexA8 board

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



Choose the right ISA

ARM: Full speed, Full size

Thumb: 20% smaller, 20% slower

Thumb was design as a static compiler target
Thumb is useful for system with 16bits memory

Thumb is not JIT friendly (non consistent constraints, small range for
branches, less registers etc)

Thumb2: Full speed, 20% smaller
Thumb?2 addresses Thumb’s issues

ARM is still the most flexible of the three ISA

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



Use the Hardware

VFP Is becoming more available, make use of it
Available on some ARMv6 (ARM11)
Available on all ARMv7A (CortexA8, CortexA9)

Thumb2 can make a difference for big code base
Neon (128bits SIMD)

Useful for codec

gcc mainline does not generate Neon code
gcc mainline support Neon assembler

If you want it, do it yourself

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



Know the software: Procedure Call Standard

When passing parameters
first four word sized parameters in register O to 3
The rest on the stack

Sub word sized parameter take a full register

64bits values are passed in an even + consecutive odd
register. On the stack 64bits values are 8 bytes aligned

f1(int a, double b, int ¢): a->r0, b->r2+r3, c-> stack

f2(double a, int b, int ¢): a->r0+rl, b->r2, c->r3
Avoiding parameters on the stack usually result in smaller and
faster code

GCC has not yet implemented use VFP register for passing
parameter

More info at http://infocenter.arm.com

THE ARCHITECTURE FOR THE DIGITAL WORLD?®



Summary

When doing mobile software development
Keep in mind memory, power
Use the hardware fully
Profile on each target
Know the surrounding software limitations

THE ARCHITECTURE FOR THE DIGITAL WORLD?®




