Jump to: navigation, search

Current Ideas Page

Welcome! hopes to be accepted as a mentoring organization in the Google Summer of Code for 2013! Below, we've collected project ideas for the 2013 GSoC.

Background is a volunteer organization that seeks to advance the state of open-source software on open-source hardware platforms capable of running high-level languages and operating systems (primarily Linux) in embedded environments. Born from taking mobile phone processors and putting them on low-cost boards to build affordable desktop computers, has evolved to focus on the needs of the "maker" community with greater focus on the I/O needed for controlling motors and reading sensors to build things like robots, 3d printers, flying drones, in-car computer systems and much more. Past GSoC projects included an RPC framework for heterogeneous processor communication, a transparent USB packet sniffer, ARM optimizations for XBMC, ARM optimizations for FFTs, make-shift pulse-width-modulation and RPC optimizations for OpenCV. has benefited from sponsorship from Texas Instruments, CircuitCo, Digi-Key and others, but avoids any dependence on that sponsorship for sustaining the effort. The project has evolved over the past few years with over 100,000 boards in circulation with developers worldwide and strong roots in the Linaro, Yocto Project, Angstrom Distribution and Linux communities---and support for running most major Linux distributions including Ubuntu, Android, Fedora, Debian, ArchLinux, Gentoo, Buildroot and many more.

BeagleBoard was inspiration for Raspberry Pi[1] and will be more affordable at the time GSoC launches[2], but is more than a throw-away computer. It is true open hardware, exposing users to the broader world of electronics, demystifying computers and fostering an environment of clones that have changed the industry.

Students will be expected to demonstrate an understanding of cross-compiling before being accepted, but support for demonstration is available through the IRC channel that typically has approximately 150 online chatters logged on at any time, most with sufficient experience to explain the process.

Every accepted student will be sent a BeagleBone Black before the first week of coding for testing their project.

Additional hardware will be provided depending on need and value.

For more information, check out and

Students looking for ideas

Student proposals can encompass projects inspired from the following list of ideas or can include personal project ideas. Previous Google Summer of Code projects show that the key to success is being passionate about your project, so propose something that is extremely interesting to you, even if it is not on this list. We will be glad to help students develop ideas into projects via the BeagleBoard IRC or the BeagleBoard mailing list. There are many potential project ideas and we will match students to projects based on their interests and help scope the proposals to something that can be completed in the Summer of Code timeframe.

There are more than 300 existing projects listed at If you are interested in one of the projects listed on the projects page, talk with the project members to see if there are any aspects of their projects that can be used to create a GSoC project. There are also several ideas on theECE497 class project idea list. You can also check out last year's idea page.

Mentors wondering where to help

Please start by registering your ideas for student projects below by following the template provided with the existing ideas. Furthermore, scroll down to the bottom and give everyone a bit of information about your expertise and availability by adding yourself to the table. Jason will make final approvals for mentor assignments based on if we first get accepted as a mentoring organization and best matching mentor skill sets with student project ideas deemed valuable to the community.

General requirements

All projects have the following basic requirements:

  1. Once accepted, the project must be registered on
  2. All newly generated materials must be released under an open source license.
  3. Individual students shall retain copyright on their works.
  4. Source code generated during the project must be released on (to be cloned to on successful completion).
  5. The registration on must include an RSS feed with project announcements and updates at every milestone. Sources for the RSS feed should be,, or some other established blog-hosting service with known reliability.
  6. To help you to break your project down into manageable chunks and also to help the project's mentors to better support your efforts, weekly project status reports should be e-mailed to the project's mentors and the organization administrator (Jason Kridner). Each status report should outline:
    1. what was accomplished that week,
    2. any issues that prevented that week's goals from being completed and
    3. your goals for the next week.
  7. Students will provide two recorded audio/video presentations uploaded to youtube or vimeo (screencasts are appropriate), one near the beginning of the project summarizing their project goals and another in the wrap-up phase to summarize their accomplishments. Examples can be found on
  8. Students will demonstrate their ability to cross-compile and utilize version control software by creating a "Hello World" application and generating a pull request to For assistance, please visit or utilize the beagleboard-gsoc Google Group. The "Hello World" application must print your name and the date out in an ARM Linux environment. Freely available emulators may be used to test your application or you can ask anyone on the chat or mailing list to help you test.
  9. All projects will produce reusable software components and will not be "what–I-built-over-my-summer-vacation" projects. Including a hardware component is welcome, but the project *deliverable* will be software that may be utilized by a wide audience of the community.


There are several areas needing contributions:
Kernel: Improving the state of the Linux kernel including improved ARM/OMAP/Sitara platform support, simplifying the development of add-on hardware for embedded systems and exchanging hardware connectivity information with userspace.
Secondary processor support (RPC/gcc/etc.): Enabling usage of DSPs, PRUs, FPGAs, Cortex-M3s, Arduinos, MSP430 launchpads and other attached processing platforms.
Scripting libraries and web interfaces: Improving the Bonescript JavaScript library, web-based interface libraries, examples or alternatives in other languages.
Frameworks for open-hardware projects: Consolidating support for simplified home manufacturing (CNC, 3D printers, laser cutters, pick-and-place machines, etc.), drones/bots (ROS, IMU, video streaming, etc.) or other common tasks.
Optimizations to existing userspace applications/libraries: Optimizations to applications and libraries like XBMC to make them run better on resource constrained environments or to take advantage of more specialized processing elements.

Upstreaming Kernel Patches

The BeagleBone currently relies on a number of out-of-tree kernel patches in order to boot. These patches are maintained by Koen Kooi (CircuitCo) and come from many sources, including TI employees and various mailing lists. Getting more of these patches upstream would make it easier to boot a BeagleBone and also make use of a BeagleBone easier for users and kernel developers who need to track upstream kernel changes, or who otherwise need to be closer to the bleeding edge of Linux kernel development. The current patch set is maintained at github and contains scripts to easily patch an upstream kernel. The scripts in this repository are used to build the kernels which ship with the Angstrom SD card images.

Goal: Push as many patches as possible to Linus's mainline kernel tree via the appropriate staging kernels for the subsystems involved.
Existing Project: The Mainline Linux Kernel, patches needing to be pushed
Hardware Skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals.
Software Skills: Able to write software in C, create patches to the Linux kernel and perform cross-compilation and testing.
Possible mentors: Matt Porter, Koen Kooi, Alan Ott

Create Linux userspace libraries for use with Wiring/Processing environment using the Arduino IDE

For doing basic physical computing tasks, the most popular and understood API is clearly the Arduino API based off of Wiring. This project would utilize the Linux interfaces provided to userspace applications for the hardware functions.

Goal: Provide an implementation of most major Arduino functions for Linux userspace and verify on BeagleBoard-xM and BeagleBone Black.
Existing Project: Engeria userspace Linux fork
Hardware Skills: Understanding of serial ports and busses and how to use a scope
Software Skills: C/C++ and Linux kernel interfaces
Possible mentors: Jason Kridner, Dave Anders

IIO debugging tools

Quick background: IIO is the new way of doing sensors but being a newer interface, it lacks tools for debugging. This project is to produce sometools to debug drivers. There are several ways this project can happen:
1. We can implement userland tools that read IIO data similar to the evtest tool.
2. We can implement a event handler for the IIO driver. This way existing tools and code can be used. There was references from another mailing list (probally LKML) talking about this.

Goal: Userspace application similar to evtest that captures debug events and instrumented IIO driver code to produce those events.
Existing Project: patched kernel with IIO driver
Hardware Skills: None.
Software Skills:C coding (1), (2) requires kernel coding
Possible mentors: Hunyue Yau

node-webkit based cross-platform getting-started app

Newbies often have a difficult time following directions that could be replaced by an application. The steps to download and install an application is something that even newbies can typically manage. This avoid issues like having bad browsers or not having typical development tools like 'ssh'. This is a common problem across all embedded Linux platforms and node-webkit provides a good solution for making it cross-platform.


  • Provide instructions for getting up-and-running with the board based (incorporate the Getting Started Guide)
  • Automatically discover boards on the LAN using mDNS and predetermined IP addresses
  • Act as a browser to interact with the board, including performing SSH and SCP
  • Discover the latest SD card images from multiple distributions
  • Bootload the board with a USB-mass-storage-class application
  • Program SD cards through the board or a USB adapter
  • Program on-board eMMC

Goal: Provide a downloadable application for Linux, Windows and Mac that enables unexperienced users to get going enough to start learning about using Linux and the embedded I/O.
Existing Project: Incomplete node webkit app for the BeagleBone Getting Started guide
Hardware Skills: N/A
Software Skills: Able to write software in JavaScript and work with node.js modules
Possible mentors: Jason Kridner

OpenEmbedded support for npm packages for node.js

Using npm for packages works well for grabbing most recent versions of things, but it doesn't work well to make sure you are getting tested versions built for your platform, it doesn't integrate with the native package manager, it is a huge security hole and it generally is a mess for distributions. OpenEmbedded provides a great vehicle for creating distributions that can professionally support deploying node.js packages rather than relying on a tool that is really only geared for prototyping.

  • Create a bitbake 'npm' class
  • Cross-build native code using node-waf, node-gyp and nw-gyp
  • Create dependencies using package.json

Goal: Bitbake 'npm' class and recipes for tools like 'node-serialport', 'express', '' and more.
Existing Project:,
Hardware Skills: N/A
Software Skills: Familiarity with C++, JavaScript and Python. Basic understanding of build systems.
Possible mentors: Jason Kridner

Bonescript web pages with live-running examples and documentation

The Bonescript JavaScript library enables hardware control from web pages using for remote procedure calls. This provides an excellent environment for teaching how to wire-up sensors and controls and rapidly prototype user interfaces. Numerous examples exist on the web, but consolidation and testing are required to make them usable by novices.

Goal: Dozens of web pages with executable script that demonstrate how to connect up sensor and actuator hardware
Existing Projects:, BMP085 Bonescript example, ECE497 examples
Hardware Skills: Basic knowledge of digital circuits.
Software Skills: JavaScript and some familiarity with Linux
Possible mentors: Jason Kridner

Integrate support libraries into Angstrom

Many BeagleBone and embedded Linux support libraries in various programming languages exist as projects that aren't included in the distro shipped with BeagleBoard and BeagleBone. These need bitbake recipes added to meta-beagleboard such that they can be easily downloaded and incorporated into the shipping distro.

  • Python PyBBIO
  • Ruby beaglebone-ruby
  • Perl bonelib

Goal: PyBBIO, beaglebone-ruby and bonelib included in the distro shipping with BeagleBone
Existing Project: PyBBIO, beaglebone-ruby, bonelib
Hardware Skills: Able to wire up simple hardware, like LEDs
Software Skills: Familiarity with Python, Ruby, Perl, embedded Linux and build systems.
Possible mentors: Jason Kridner

SYSFS entries for IIO and PWM

IIO and PWM provide mechanisms for sampling touch screens, performing general purpose A/D conversions to read sensors, generating voltage levels and driving motors. The Linux kernel SYSFS mechanism provides a simplified mechanism for userspace applications to set parameters and read/write data values.

Goal: Push patches to Linux mainline providing SYSFS entries for IIO and PWM useful for building a demo robot
Existing project:
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in C, create patches to the Linux kernel and perform cross-compilation
Possible mentors: Laine Walker-Avina

Using BeagleBone PRUs to control CNC and 3D printer stepper motor Drivers

This project is to write code for the PRU (realtime processors on the AM335x used in the Beagle Bone) so that it can generate multiple step and direction outputs based on a queue of commands in real time. This needs to be done in real time so the acceleration and coordination of multiple stepper motors can be controlled and coordinated. A step/dir signal is commonly used in a lot of stepper motor drivers. While it is possible to generate stepper phase information from the PRU, it is also undesireable from a testing stand point. An example of a reason for doing this is controlling the X/Y directions of the head of a 3D printer so that it can generate precise curves. While similar code has been done, it is not done in a real time fashion so it is difficult to add coordination between motors and/or maintain a known acceleration.

The result of this code should be something interfaceable to a control system like the non realtime portions of the Linux CNC project (formerly the EMC project). But as a demo, this same code should also demonstrate a node.js functionality such as a "G-code" interpreter. This node.js portion can be considered a second project due to the different skill sets required and ideally this project would be split between two GSoC students. One project would be working mostly on PRU assembly with integration into the Linux kernel. The other project would be working mostly on userspace JavaScript in node.js and C++ code for anything needing optimization or low-level kernel access. Mentors would heavily assist on defining the right interfaces between the two programming environments. Goal: create code to use the AM335x PRUs to generate multiple step and direction outputs for reprap and CNC applications
Existing projects: Pru Documentation, UIO Driver documentation
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Assembly and C coding. Node.js for g-code interpretation
Possible mentors: Tom King, Jason Kridner, Hunyue Yau, Laine Walker-Avina

PRU upstreaming

Remove HWMOD dependency requirement for PRU along with adding device tree bindings so it can be upstreamed into Linus's tree.

Goal: Push patches to Linux mainline providing support for the AM335x PRU
Existing project:
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in C, understand existing patches with PRU support, create patches to the Linux kernel and perform cross-compilation
Possible mentors: Start with Jason Kridner and Matt Porter, but we'll get some others involved

PRU firmware loader

Allow "firmware" which are really binary PRU applications to be loaded directly on PRU cores and executed using the request_firmware() functionality of the Linux Kernel. This should also be Cape Manager to load PRU cape specific applications.

Ideal workflow:

  • Cape detected that uses the PRU
    • Setup pinmux
  • Find the respective firmware file for PRU core (or both cores) /lib/firmware/cape_A020_pru0.bin
  • Load onto PRU and begin execution.

Goal: Push patches to Linux mainline providing support to loading firmware on PRU cores and executing
Existing project:
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in C, create patches to the Linux kernel and perform cross-compilation
Possible mentor(s): Matt Porter

BotSpeak virtual machine for Bonescript and PRU

Based on Chris Roger's BotSpeak work to provide a virtual machine for typical Arduino functions that can be accessed from LabView, build a virtual machine to enable PRU programming from Bonescript. The virtual machine is a simple interpreter that loops over the command to perform delay, pinMode, attachInterrupt, analogRead, analogWrite, digitalRead and digitalWrite functions. A simple conditional goto is resolved at load-time and a minimal set of variables are available for use. Support will need to be included for simple expressions, but the pre-parser can break them down ahead of time. Introspection in JavaScript should be used to convert a minimal function definition into source to be fed to a parser and passed to the interpreter on the PRU via shared memory.

Goal: Implement a BotSpeak interpreter that off-loads hard real-time tasks from Bonescript onto the PRU and include that in the Bonescript project
Existing projects:,, Chris' language definition
Hardware skills: Able to read schematics, understand basic digital logic and monitor logic-level digital signals
Software skills: Able to write software in JavaScript and assembly
Possible mentors: Chris Rogers, Jason Kridner, Tom King

Android-based boot host

Boot your BeagleBone using your Android phone. Combined with the Android Accessory Development Kit code available for BeagleBone and an application to help code/run small applications, this gives you a complete development environment that is easy to distribute to other users.

On a phone/tablet that supports USB host mode (which sadly not all modern devices do), the phone/tablet would provide the early boot loader and kernel code to the Bone using libusb in host mode. After booting the kernel the Bone could switch to USB host mode (the ADK setup) to e.g. load the filesystem and/or communicate with an App on the phone side.

Another way that will work on all certified Android devices is to have the boot loader already on the sdcard and to run the boot loader in USB host mode with the Android device is USB device mode. The bootloader would then get only the kernel and filesystem from the Android device.

Besides using Android to provide a kernel/filesystem to the Bone, one could also use it as an input/display device, relaying touchscreen events to the Bone and displaying the Bone GUI output on the phone/tablet screen.

Goal: Download a Linux image from the web and boot a BeagleBone using it over USB
Existing Project:, BeagleBone implementation of Android Accessory Development Toolkit
Hardware Skills: Some knowledge of USB
Software Skills: Java, C and familiarity with Android
Possible mentors: Start with Jason Kridner, but we'll get some others involved

Android under Angstrom

Some people want to play Angry Birds or run other Android apps on their BeagleBoard/BeagleBone. Of course, you could use the Rowboat Android project as-is, but then you'd have to give up all of their typical Linux/X11 applications available in Angstrom. This project would use an Android-enabled kernel and a combination of both Angstrom and Android file systems. The input and display methods required for Android would need to be adjusted to run in on a virtual terminal and chroot/chvt would be used to invoke the various user space windows.

This has essentially been done once as part of Always Innovating's Super-Jumbo demo running Ubuntu, Angstrom, ChromeOS and Android simultaneously. The fundamental challenge is getting it reproducible and integrated into the OpenEmbedded build system for Angstrom and then starting to minimize the wasted file space by sharing libraries. Eventually, even making Android applications run in a window is desired.

Goal: Run Android applications under Angstrom and toggle back-and-forth using CTRL-ALT-Fn key presses.
Existing projects:,
Hardware skills: Minimal
Software skills: Able to write software in C and Java, experience with X11 and Android
Possible mentors: Hunyue Yau

Library of Arduino-compatible functions for StarterWare

This would be an implementation of Arduino utilizing the BeagleBone Black and the StarterWare O/S independent library for accessing the hardware.

Goal: Utilize the Energia fork of Arduino to push support for BeagleBone and BeagleBone Black
Existing Project: Energia, StarterWare
Hardware Skills: Yes
Software Skills: C/C++
Possible mentors: Jason Kridner (others can be referred if there are interested students)

Previous ideas


Name IRC nickname Native language Other languages Timezone Software help Hardware help Focus projects
David Anders prpplague English Klingon US Central bootloader, kernel, userspace, debugging schematic, layout, debugging Arduino IDE for userspace linux
Jason Kridner jkridner English - US Eastern JavaScript, C, u-boot wiring, timing diagrams, basic debug Bonescript development
Vladimir Pantelic av500 German English, Serbian CET Experienced on most areas of Embedded Linux, Multimedia Schematic Review + Design Embedded Linux, Linux Multimedia, Android
Philip Balister Crofton - - - - - -
Russ Dill Russ English None US Pacific Time Experienced on most areas of Embedded Linux or Systems Schematic Review + Design ARM/AM335x Kernel Development
Matt Porter mdp English (U.S. Midwestern Dialect) None US Eastern Embedded Linux Firmware/Kernel and system level design. Designing Linux drivers to make the best use of existing infrastructure. Schematic Review + Design ARM/AM335x/OMAP/PRU U-Boot and Kernel/Driver Development
Koen Kooi koen Dutch English CET Experienced on most areas of Embedded Linux, buildsystems - -
Tom King ka6sox English None US Pacific Time Experienced on most areas of Embedded Linux or Systems Schematic Review + Design, Board Layout ARM/AM335x Kernel Development
Jayneil Dalal jayneil English Hindi, Gujarati US Central Time Basic Embedded Linux, Documentation - Application based hw/sw projects on the Beaglebone
Laine Walker-Avina Ceriand English - US Pacific C, Assembly, Buildroot, Reprap USB protocol & logic analyzers, Various JTAG probes, 3d printer OpenOCD, bootloaders, Linux kernel, Reprap firmware
Alan Ott alan_o American English (Central Florida Dialect) American English (Midwestern Dialect) US Eastern (EDT) Linux Kernel, Firmware Breadboard wire-jamming 802.15.4 Wireless, USB
Hunyue Yau ds2 English - US Pacific Android, C, Linux, scripting Yes -
Tom Rini Tartarus English - US Eastern C, u-boot, OpenEmbedded - U-Boot or OpenEmbedded development
Luis Gustavo Lira lglira Spanish English GMT/UTC -5 Embedded Linux, C, Android Design, Debug, Wiring Projects on the BeagleBone
Derek Molloy molloyd - - GMT (London) C++, Java, Embedded C/C++ Digital Circuits, Interfacing to Sensors Beaglebone Applications, Linux Multimedia, Embedded Linux
Steven Frank Barrett steveb English - US Mountain C microcontrollers, BeagleBone -
Frans Meulenbroeks eFfeM Dutch English CET Linux (including drivers), U-Boot, C, Documentation; Coding Style, QA device interfacing (for drivers), review FPGA code -
Andrew Bradford bradfa English - E{S,D}T C, some u-boot and kernel PMICs, SD/eMMC, schematic review Cross Linux from Scratch, Debian, 6LoWPAN
Pantelis Antoniou panto Greek English GMT+2 Linux Kernel, S/W Architecture - Embedded Linux architecture fixes

Previous mentors